✨[hadoop3.x]新一代的存储格式Apache Arrow(四)

前言

目前博客Hadoop文章大都停留在Hadoop2.x阶段,本系列将依据黑马程序员大数据Hadoop3.x全套教程,对2.x没有的新特性进行补充更新,一键三连加关注,下次不迷路!

历史文章

[hadoop3.x系列]HDFS REST HTTP API的使用(一)WebHDFS

[hadoop3.x系列]HDFS REST HTTP API的使用(二)HttpFS

[hadoop3.x系列]Hadoop常用文件存储格式及BigData File Viewer工具的使用(三)

✨[hadoop3.x]新一代的存储格式Apache Arrow(四)

🍑新一代的存储格式Apache Arrow

img

🐒Arrow简介

l Apache Arrow是一个跨语言平台,是一种列式内存数据结构,主要用于构建数据系统。Apache Arrow在2016年2月17日作为顶级Apache项目引入。

img

l Apache Arrow发展非常迅速,并且在未来会有更好的发展空间。 它可以在系统之间进行高效且快速的数据交换,而无需进行序列化,而这些成本已与其他系统(例如Thrift,Avro和Protocol Buffers)相关联。

l 每一个系统实现,它的方法(method)都有自己的内存存储格式,在开发中,70%-80%的时间浪费在了序列化和反序列化上。

img

l Arrow促进了许多组件之间的通信。 例如,使用Python(pandas)读取复杂的文件并将其转换为Spark DataFrame。

img

🐒Arrow是如何提升数据移动性能的

l 利用Arrow作为内存中数据表示的两个过程可以将数据从一种方法“重定向”到另一种方法,而无需序列化或反序列化。 例如,Spark可以使用Python进程发送Arrow数据来执行用户定义的函数。

l 无需进行反序列化,可以直接从启用了Arrow的数据存储系统中接收Arrow数据。 例如,Kudu可以将Arrow数据直接发送到Impala进行分析。

以将Arrow数据直接发送到Impala进行分析。

l Arrow的设计针对嵌套结构化数据(例如在Impala或Spark Data框架中)的分析性能进行了优化。

后记

📢博客主页:https://manor.blog.csdn.net
📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
📢本文由 manor 原创,首发于 CSDN博客🙉
📢Hadoop系列文章会每天更新!✨

  • 1
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:博客之星2021 设计师:Hiro_C 返回首页
评论

打赏作者

Maynor996

觉得有用,要个免费的三连可有?

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值